On the energy-minimizing strains in martensitic microstructures—Part 2: Geometrically linear theory
Journal of the Mechanics and Physics of Solids, ISSN: 0022-5096, Vol: 61, Issue: 6, Page: 1511-1530
2013
- 15Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper addresses the theoretical prediction of the quasiconvex hull of energy-minimizing (or stress-free) strains that can be realized by martensitic microstructure. Polyconvexification and related notions are used to derive some upper bounds (in the sense of inclusion) on the quasiconvex hull. Lower bounds are obtained from lamination techniques. The geometrically linear setting (infinitesimal strains) is considered in the present Part 2. Three-, four-, and twelve-well problems are considered. In particular, the structure of the set of energy-minimizing strains in cubic to monoclinic transformations is investigated in detail. That investigation is notably supported by three-dimensional vizualisations obtained by considering four-well restrictions.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022509613000070; http://dx.doi.org/10.1016/j.jmps.2012.12.011; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84876290914&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0022509613000070; https://dx.doi.org/10.1016/j.jmps.2012.12.011
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know