Hydration properties of alkali-activated fly ash/slag binders modified by MgO with different reactivity
Journal of Building Engineering, ISSN: 2352-7102, Vol: 44, Page: 103252
2021
- 38Citations
- 36Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The roles of MgO in alkali-activated materials have attracted much attention in recent decades. The effects of the reactivity of MgO on the compressive strengths and hydration properties of alkali-activated materials consisting of a blend of fly ash, slag, and MgO were studied here. The alkalinity of the activator, vital to the dissolution and hydration mechanisms of MgO, was investigated as well. It was found that MgO reactivity had little influence on the crystallization of C–S–H type gels, while increasing the MgO reactivity prompted incorporation of Na and Mg atoms into amorphous binding chains within the binders. A higher hydration degree of MgO and alkali-activated materials can be achieved by using highly reactive MgO, as revealed by crystallinity and hydration analyses. The hydration mechanism of reactive MgO in the alkali-activated fly ash and slag blended materials is discussed.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2352710221011104; http://dx.doi.org/10.1016/j.jobe.2021.103252; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85119092187&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2352710221011104; https://dx.doi.org/10.1016/j.jobe.2021.103252
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know