DOI:
10.1016/j.clinph.2017.10.024
Author(s):
Seung Suk Kang, Angus W. MacDonald III, Matthew V. Chafee, Chang-Hwan Im, Edward M. Bernat, Nicholas D. Davenport, Scott R. Sponheim
Publisher(s):
Elsevier BV
Tags:
Neuroscience, Medicine
article description
To better understand the origins of working memory (WM) impairment in schizophrenia we investigated cortical oscillatory activity in people with schizophrenia (PSZ) while they performed a WM task requiring encoding, maintenance, and retrieval/manipulation processes of spatial information. We examined time–frequency synchronous energy of cortical source signals that were derived from magnetoencephalography (MEG) localized to cortical regions using WM−related hemodynamic responses and individualized structural head-models. Compared to thirteen healthy controls (HC), twelve PSZ showed performance deficits regardless of WM−load or duration. During encoding, PSZ had early theta and delta event-related synchrony (ERS) deficits in prefrontal and visual cortices which worsened with greater memory load and predicted WM performance. During prolonged maintenance of material, PSZ showed deficient beta event-related desynchrony (ERD) in dorsolateral prefrontal, posterior parietal, and visual cortices. In retrieval, PSZ showed reduced delta/theta ERS in the anterior prefrontal and ventral visual cortices and diminished gamma ERS in the premotor and posterior parietal cortices. Although beta/gamma cortical neural oscillatory deficits for maintenance/retrieval are evident during WM, the abnormal prefrontal theta-frequency ERS for encoding is most predictive of poor WM in schizophrenia. Time-frequency-spatial analysis identified process- and frequency-specific neural synchrony abnormalities underlying WM deficits in schizophrenia.

This article has 0 Wikipedia reference.