Ontology-based sentiment analysis of twitter posts

Citation data:

Expert Systems with Applications, ISSN: 0957-4174, Vol: 40, Issue: 10, Page: 4065-4074

Publication Year:
Usage 2986
Abstract Views 2916
Link-outs 62
Clicks 8
Captures 526
Readers 429
Exports-Saves 97
Social Media 9
Shares, Likes & Comments 8
Tweets 1
Citations 141
Citation Indexes 141
Efstratios Kontopoulos; Christos Berberidis; Theologos Dergiades; Nick Bassiliades
Elsevier BV
Engineering; Computer Science
Most Recent Tweet View All Tweets
article description
The emergence of Web 2.0 has drastically altered the way users perceive the Internet, by improving information sharing, collaboration and interoperability. Micro-blogging is one of the most popular Web 2.0 applications and related services, like Twitter, have evolved into a practical means for sharing opinions on almost all aspects of everyday life. Consequently, micro-blogging web sites have since become rich data sources for opinion mining and sentiment analysis. Towards this direction, text-based sentiment classifiers often prove inefficient, since tweets typically do not consist of representative and syntactically consistent words, due to the imposed character limit. This paper proposes the deployment of original ontology-based techniques towards a more efficient sentiment analysis of Twitter posts. The novelty of the proposed approach is that posts are not simply characterized by a sentiment score, as is the case with machine learning-based classifiers, but instead receive a sentiment grade for each distinct notion in the post. Overall, our proposed architecture results in a more detailed analysis of post opinions regarding a specific topic.