H-detected MAS solid-state NMR experiments enable the simultaneous mapping of rigid and dynamic domains of membrane proteins.

Citation data:

Journal of magnetic resonance (San Diego, Calif. : 1997), ISSN: 1096-0856, Vol: 285, Page: 101-107

Publication Year:
2017
Usage 41
Clicks 41
Captures 9
Readers 9
Social Media 1
Tweets 1
PMID:
29173803
DOI:
10.1016/j.jmr.2017.09.003
Author(s):
Gopinath, T; Nelson, Sarah E D; Veglia, Gianluigi
Publisher(s):
Elsevier BV
Tags:
Biochemistry, Genetics and Molecular Biology; Physics and Astronomy
Most Recent Tweet View All Tweets
article description
Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes.