An AI-Assisted Design Method for Topology Optimization without Pre-Optimized Training Data
Proceedings of the Design Society, ISSN: 2732-527X, Vol: 2, Page: 1589-1598
2022
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures23
- Readers23
- 23
Conference Paper Description
Engineers widely use topology optimization during the initial process of product development to obtain a first possible geometry design. The state-of-the-art method is iterative calculation, which requires both time and computational power. This paper proposes an AI-assisted design method for topology optimization, which does not require any optimized data. The presented AI-assisted design procedure generates geometries that are similar to those of conventional topology optimizers, but require only a fraction of the computational effort.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know