PlumX Metrics
Embed PlumX Metrics

Maintenance of genetic homogeneity in systems with multiple genomes

Genetical Research, ISSN: 1469-5073, Vol: 27, Issue: 2, Page: 249-265
1976
  • 48
    Citations
  • 0
    Usage
  • 10
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Genes or sequences of DNA present in multiple copies per cell include entire genomes of mitochondria and chloroplasts, nuclear ribosomal RNA genes, and highly repetitive sequences in heterochromatin. All copies are nearly identical, in spite of mutational pressure and weak selection. A zygote containing mitochondrial or chloroplast genophores of two different genotypes quickly produces progeny pure for one genotype or another (vegetative segregation). Evidence from yeast and Chlamy-domonas suggests that organelle genophores undergo repeated rounds of random mating and recombination. When two molecules carrying different alleles at a locus recombine, gene conversion can result in the cell becoming pure for one allele. Stochastic matching and conversion (SMAC) has been studied by computer simulations which suggest that it will tend to eliminate new mutations in yeast mitochondrial DNA and speed up vegetative segregation. We have verified previous suggestions that gene conversion, occurring during unequal mitotic sister-strand crossing-over, provides an efficient mechanism for maintaining the homogeneity of repeated sequences in eukaryotic chromosomes. © 1976, Cambridge University Press. All rights reserved.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know