Surface Plasmon Aided Ethanol Dehydrogenation Using Ag-Ni Binary Nanoparticles
ACS Catalysis, ISSN: 2155-5435, Vol: 7, Issue: 4, Page: 2294-2302
2017
- 45Citations
- 53Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Plasmonic metal nanoparticles absorb light energy and release the energy through radiative or nonradiative channels. Surface catalytic reactions take advantage of the nonradiative energy relaxation of plasmons with enhanced activity. Particularly, binary nanoparticles are interesting because diverse integration is possible, consisting of a plasmonic part and a catalytic part. Herein, we demonstrated ethanol dehydrogenation under light irradiation using Ag-Ni binary nanoparticles with different shapes, snowman and core-shell, as plasmonic catalysts. The surface plasmon formed in the Ag part enhanced the surface catalytic reaction that occurred at the Ni part, and the shape of the nanoparticles affected the extent of the enhancement. The surface plasmon compensated the thermal energy required to trigger the catalytic reaction. The absorbed light energy was transferred to the catalytic part by the surface plasmon through the nonradiative hot electrons. The effective energy barrier was greatly reduced from 41.6 kJ/mol for the Ni catalyst to 25.5 kJ/mol for the core-shell nanoparticles and 22.3 kJ/mol for the snowman-shaped nanoparticles. These findings can be helpful in designing effective plasmonic catalysts for other thermally driven surface reactions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know