Validated QSAR prediction of OH tropospheric degradation of VOCs: Splitting into training-test sets and consensus modeling
Journal of Chemical Information and Computer Sciences, ISSN: 0095-2338, Vol: 44, Issue: 5, Page: 1794-1802
2004
- 228Citations
- 89Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations228
- Citation Indexes226
- 226
- CrossRef172
- Policy Citations2
- Policy Citation2
- Captures89
- Readers89
- 89
Article Description
The rate constant for hydroxyl radical tropospheric degradation of 460 heterogeneous organic compounds is predicted by QSAR modeling. The applied Multiple Linear Regression is based on a variety of theoretical molecular descriptors, selected by the Genetic Algorithms-Variable Subset Selection (GA-VSS) procedure. The models were validated for predictivity by both internal and external validation. For the external validation two splitting approaches, D-optimal Experimental Design and Kohonen Artificial Neural Networks (K-ANN), were applied to the original data set to compare the two methodologies. We emphasize that external validation is the only way to establish a reliable QSAR model for predictive purposes. Predicted data by consensus modeling from different models are also proposed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know