Substituent effects on the ring-opening mechanism of lithium bromocyclopropylidenoids to allenes
Journal of Organic Chemistry, ISSN: 0022-3263, Vol: 73, Issue: 21, Page: 8182-8188
2008
- 20Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations20
- Citation Indexes20
- 20
- CrossRef18
- Captures13
- Readers13
- 13
Article Description
(Chemical Equation Presented) The ring-opening reactions of lithium bromocyclopropylidenoids to allenes have been investigated computationally at the B3LYP/6-31G(d) level of theory. Formally, two pathways can be considered: the reaction may either proceed in a concerted fashion or stepwise with the intermediacy of a free cyclopropylidene. In both cases, the loss of the bromide ion determines the kinetic of the reaction. The stability of the reactive intermediate, i.e., the carbene, is dependent on the substituent. Cyclopropylidenes bearing an electron-donating group (+M) are extremely unstable and ring-open readily to the allene. In contrast, bromocyclopropylidenoids with electron-withdrawing groups are particularly stable species. Here, a high energy barrier needs to be overcome in order to split off bromide and to generate the corresponding carbene or allene. Still, for most of the monosubstituted cyclopropylidenes investigated during this study, the activation energy for the cyclopropylidene to allene rearrangement is lower than the energy required for parent compound (X = H) except for X = -SiH and -CF. © 2008 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know