Computational study of the mechanism and product yields in the reaction systems CH + CH ⇄ CH ⇄ H + CH and CH + CH → CH + CH
Journal of Physical Chemistry A, ISSN: 1089-5639, Vol: 106, Issue: 30, Page: 6952-6966
2002
- 13Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The mechanism of the radical-radical reaction CH + CH (1) was studied by quantum chemical methods. The pathways of reaction channels observed in previous experimental studies, as well as those of other potential channels, were investigated. The results of the quantum chemical study and of the earlier experimental work were used to create a model of the chemically activated route (CH + CH ⇄ CH → H + CH) of reaction 1. In this model, energy- and angular momentum-dependent rate constants are calculated using the RRKM method in combination with the microcanonical variational selection of the transition states. Pressure effects are described by solution of the master equation. Temperature and pressure dependences of the rate constants and product yields were investigated. The model was used to predict the rate constants and branching fractions of reaction 1 at temperatures and pressures outside the experimental ranges. The same model was used to analyze kinetics of two other reactions which occur on the same potential energy surface: the thermal decomposition of propene (2) and the reaction of H atom with allyl radical, H + CH ⇄ CH → CH + CH (3). The results demonstrate the increasing importance of the CH + CH channels in both reactions 2 and 3 at high temperatures (above ∼1500 K).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know