Tunable photoluminescence properties of fluorescein in a layered double hydroxide matrix by changing the interlayer microenvironment
Journal of Physical Chemistry C, ISSN: 1932-7447, Vol: 114, Issue: 49, Page: 21070-21076
2010
- 40Citations
- 31Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper reports a novel method to tune the fluorescence properties of fluorescein (FLU) in a 2D matrix of layered double hydroxide (LDH) by changing the interlayer microenvironment. FLU and surfactants with different alkyl chain lengths were cointercalated in the galleries of a ZnAl LDH by the anion exchange method. Thin films of FLU-CHSO /LDH (n = 5, 6, 7, 10, and 12, respectively; n stands for the number of carbon in the alkyl chain), which possess a well c-orientation revealed by XRD and SEM, were obtained by the solvent evaporation method on Si substrates. It was found that the orientation of FLU and its anisotropy, fluorescence wavelength, fluorescence quantum yield, and lifetime correlate with the microenvironment of the LDH gallery, which can be tuned by simply changing the alkyl chain length of the surfactant. The optimal fluorescence quantum yield, anisotropy, the longest fluorescence lifetime and the strongest photostability of the FLU-CHSO/LDH film can be obtained with n = 7, due to the "size-matching" rule between the organic dye and surfactant. © 2010 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know