Upconversion Particle as a Local Luminescent Brownian Probe: A Photonic Force Microscopy Study
ACS Photonics, ISSN: 2330-4022, Vol: 1, Issue: 12, Page: 1251-1257
2014
- 29Citations
- 36Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Near-infrared (NIR) light sensitive lanthanide-doped NaYF upconversion particles (UCPs) are gaining increasing attention as local probes in biomedical applications. Here, we implemented a photonic force microscope (PFM) to manipulate and study the optical properties of trapped single UCPs, β-NaYF:Yb,Er. In particular, we focused on the mechanisms of the optical trapping of nonspherical UCPs of different sizes, in the range 0.5-2 μm, as well as on their upconversion photoluminescence (UCL) properties under excitation with the strongly focused laser beam (λ = 1064 nm) of the PFM, operating at power densities up to 14.7 MW cm. A careful analysis of UCL under such conditions points to three emission peaks at 469, 503.6, and 616.1 nm, which were enhanced by the high laser power density. The analysis of Brownian motion was used to quantify the thermal fluctuations of the particle inside the optical trap as well as the particle sizes and optical forces acting in the two dimensions perpendicular to the optical axis. A steep dependence of UCL as a function of the particle diameter was found for UCPs having sizes smaller than the focal spot (∼900 nm) of the NIR laser. (Figure Presented).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know