Quantum locking of intrinsic spin squeezed state in Earth-field-range magnetometry
npj Quantum Information, ISSN: 2056-6387, Vol: 11, Issue: 1
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the Earth-field range, the nonlinear Zeeman (NLZ) effect has been a bottleneck limiting the sensitivity and accuracy of atomic magnetometry from physical mechanism. To break this bottleneck, various techniques are introduced to suppress the NLZ effect. Here we revisit the spin dynamics in the Earth-field-range magnetometry with the NLZ effect and identify the existence of the intrinsic spin squeezed state (SSS), generated from the coupling between nuclear and electron spins of each individual atom, with the oscillating squeezing degree and squeezing axis. Such oscillating features of the SSS prevent its direct observation and as well, accessibility to magnetic sensing. To exploit quantum advantage of the intrinsic SSS in the Earth-field-range magnetometry, it’s essential to lock the oscillating SSS to a persistent one. Hence we develop a quantum locking technique to achieve a persistent SSS, benefiting from which the sensitivity of the Earth-field-range magnetometer is quantum-enhanced. This work presents an innovative way turning the drawback of NLZ effect into the quantum advantage and opens a new access to quantum-enhanced magnetometry in the Earth-field range.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know