Single-component superconductivity in UTe at ambient pressure
Nature Physics, ISSN: 1745-2481, Vol: 20, Issue: 7, Page: 1124-1130
2024
- 10Citations
- 21Captures
- 4Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Ultrasound experiment identifies new superconductor
With pulses of sound through tiny speakers, Cornell physics researchers have clarified the basic nature of a new superconductor. Since it was found to be
Article Description
The microscopic mechanism of Cooper pairing in a superconductor leaves its fingerprint on the symmetry of the order parameter. UTe has previously been inferred to have a multi-component order parameter, in part due to the apparent presence of a two-step superconducting transition in some samples. However, recent experimental observations in newer-generation samples have raised questions about this interpretation, pointing to the need for a direct probe of the order parameter symmetry. Here we use pulse-echo ultrasound to measure the elastic moduli of UTe in samples that exhibit both one and two superconducting transitions. We demonstrate the absence of thermodynamic discontinuities in the shear elastic moduli of both single- and double-transition samples, providing direct evidence that UTe has a single-component superconducting order parameter. We further show that superconductivity is highly sensitive to compression strain along the a and c axes but insensitive to strain along the b axis. This leads us to suggest a single-component, odd-parity order parameter—specifically the B order parameter—as most compatible with our data.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know