Untargeted high-resolution paired mass distance data mining for retrieving general chemical relationships
Communications Chemistry, ISSN: 2399-3669, Vol: 3, Issue: 1
2020
- 24Citations
- 42Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations24
- Citation Indexes24
- 24
- CrossRef9
- Captures42
- Readers42
- 42
Article Description
Untargeted metabolomics analysis captures chemical reactions among small molecules. Common mass spectrometry-based metabolomics workflows first identify the small molecules significantly associated with the outcome of interest, then begin exploring their biochemical relationships to understand biological fate or impact. We suggest an alternative by which general chemical relationships including abiotic reactions can be directly retrieved through untargeted high-resolution paired mass distance (PMD) analysis without a priori knowledge of the identities of participating compounds. PMDs calculated from the mass spectrometry data are linked to chemical reactions obtained via data mining of small molecule and reaction databases, i.e. ‘PMD-based reactomics’. We demonstrate applications of PMD-based reactomics including PMD network analysis, source appointment of unknown compounds, and biomarker reaction discovery as complements to compound discovery analyses used in traditional untargeted workflows. An R implementation of reactomics analysis and the reaction/PMD databases is available as the pmd package.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know