A simple physical mechanism enables homeostasis in primitive cells.

Citation data:

Nature chemistry, ISSN: 1755-4349, Vol: 8, Issue: 5, Page: 448-53

Publication Year:
2016
Usage 16
Clicks 10
Abstract Views 4
Link-outs 2
Mentions 1
News Mentions 1
Social Media 9
Tweets 9
Citations 10
Citation Indexes 10
PMID:
27102678
DOI:
10.1038/nchem.2475
PMCID:
PMC4929987
Author(s):
Engelhart, Aaron E, Adamala, Katarzyna P, Szostak, Jack W
Publisher(s):
Springer Nature
Tags:
Chemistry, Chemical Engineering
Most Recent Tweet View All Tweets
Most Recent News Mention
article description
The emergence of homeostatic mechanisms that enable maintenance of an intracellular steady state during growth was critical to the advent of cellular life. Here, we show that concentration-dependent reversible binding of short oligonucleotides, of both specific and random sequence, can modulate ribozyme activity. In both cases, catalysis is inhibited at high concentrations, and dilution activates the ribozyme via inhibitor dissociation, thus maintaining near-constant ribozyme specific activity throughout protocell growth. To mimic the result of RNA synthesis within non-growing protocells, we co-encapsulated high concentrations of ribozyme and oligonucleotides within fatty acid vesicles, and ribozyme activity was inhibited. Following vesicle growth, the resulting internal dilution produced ribozyme activation. This simple physical system enables a primitive homeostatic behaviour: the maintenance of constant ribozyme activity per unit volume during protocell volume changes. We suggest that such systems, wherein short oligonucleotides reversibly inhibit functional RNAs, could have preceded sophisticated modern RNA regulatory mechanisms, such as those involving miRNAs.

This article has 0 Wikipedia mention.