New insights into diffusion in 3D crowded media by Monte Carlo simulations: Effect of size, mobility and spatial distribution of obstacles
Physical Chemistry Chemical Physics, ISSN: 1463-9076, Vol: 13, Issue: 16, Page: 7396-7407
2011
- 50Citations
- 48Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations50
- Citation Indexes50
- 50
- CrossRef45
- Captures48
- Readers48
- 48
Article Description
Particle diffusion in crowded media was studied through Monte Carlo simulations in 3D obstructed lattices. Three particular aspects affecting the diffusion, not extensively treated in a three-dimensional geometry, were analysed: the relative particle-obstacle size, the relative particle-obstacle mobility and the way of having the obstacles distributed in the simulation space (randomly or uniformly). The results are interpreted in terms of the parameters that characterize the time dependence of the diffusion coefficient: the anomalous diffusion exponent (α), the crossover time from anomalous to normal diffusion regimes (τ) and the long time diffusion coefficient (D*). Simulation results indicate that there are a more anomalous diffusion (smaller α) and a lower long time diffusion coefficient (D*) when obstacle concentration increases, and that, for a given total excluded volume and immobile obstacles, the anomalous diffusion effect is less important for bigger size obstacles. However, for the case of mobile obstacles, this size effect is inverted yielding values that are in qualitatively good agreement with in vitro experiments of protein diffusion in crowded media. These results underline that the pattern of the spatial partitioning of the obstacle excluded volume is a factor to be considered together with the value of the excluded volume itself. © the Owner Societies.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=79953903082&origin=inward; http://dx.doi.org/10.1039/c0cp01218a; http://www.ncbi.nlm.nih.gov/pubmed/21412541; https://xlink.rsc.org/?DOI=c0cp01218a; https://dx.doi.org/10.1039/c0cp01218a; https://pubs.rsc.org/en/content/articlelanding/2011/cp/c0cp01218a
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know