Ionic liquid polymer materials with tunable nanopores controlled by surfactant aggregates: A novel approach for COcapture
Journal of Materials Chemistry A, ISSN: 2050-7496, Vol: 8, Issue: 30, Page: 15034-15041
2020
- 20Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Monomeric ionic liquids (ILs), ionic liquid polymers (ILPs) and IL-based composites have emerged as potential materials for CO2 capture owing to their exceptional intrinsic physical solubility of CO2. This study reports the development of novel IL polymer materials incorporating CO2-philic tunable nanopores and their subsequent utilization for CO2 capture. In this approach, primarily, micelles were formed in monomeric IL 1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide using a CO2-philic surfactant (N-ethyl perfluorooctyl sulfonamide) through self-assembly, from which polymeric materials were fabricated via free radical polymerization. The CO2 adsorption studies demonstrated 3-fold enhancements for the surfactant micelle incorporated IL polymers (SMI-ILPs) compared to their bare IL polymers. The SMI-ILPs were regenerated by simply heating at 70 °C and reused for 15 cycles with a retention of over 96% of CO2 uptake capacity. The simple recovery and notable enhancements in CO2 sorption of novel SMI-ILPs were traced to the adsorption of CO2 at the (i) highly porous IL-based polymeric networks, and (ii) nanometer sized apolar pores made by CO2-philic surfactant tails. This work will open up new possibilities for the development of IL based smart materials for CO2 capture and separation. This journal is
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know