Sustainable electrode material for high-energy supercapacitor: Biomass-derived graphene-like porous carbon with three-dimensional hierarchically ordered ion highways
Physical Chemistry Chemical Physics, ISSN: 1463-9076, Vol: 23, Issue: 22, Page: 12807-12821
2021
- 117Citations
- 92Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations117
- Citation Indexes117
- 117
- CrossRef98
- Captures92
- Readers92
- 92
Article Description
Biomass-derived carbonaceous materials have been deemed to be one of the up-and-coming electrode materials for high-performance energy storage systems due to their cost-neutral abundant resources, sustainable nature, easy synthesis methods, and environmentally benign features. In this work, various graphene-like porous carbon networks (GPCs) with three-dimensional (3D) hierarchically ordered "ion highways"have been synthesized by the carbonization/activation of orange-peel wastes for use as an electrode material in high-energy supercapacitors. The porous structures and surface morphologies of the GPCs were rationally fine-tuned as a function of the activation agent ratio. The prepared GPCs offered superior specific surface area in addition to a 3D porous structure with a fine-tuned pore size distribution. The electrochemical behaviors of all the GPCs were evaluated in 6.0 M KOH aqueous electrolyte via a three-electrode electrochemical setup. Owing to their synergistic characteristics, including superior specific surface area (1150 m2 g-1), large pore volume, and fine-tuned 3D porous architecture, GPC-3.0 (synthesized with a KOH : GPC ratio of 3.0, by wt.) exhibited the best capacitive behavior amongst the studied GPCs. The 3D hierarchically ordered architecture acts like well-designed ion highways that boost electron transportation, thereby enhancing electrochemical energy storage. A coin-cell-type symmetrical supercapacitor based on GPC-3.0 was tested in both 1.0 M Na2SO4 (salt-in-water) and 12.0 m NaNO3 (water-in-salt) electrolytes. The supercapacitor cell based on the water-in-salt electrolyte offered a wide operating voltage of 2.3 V. The obtained energy density and power density values were comparable to those of commercial high-performance electrical double-layer capacitors. Such notable findings will shed light on next-generation high-rate electrochemical energy storage systems based on biomass-derived carbonaceous materials.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107942260&origin=inward; http://dx.doi.org/10.1039/d1cp01726h; http://www.ncbi.nlm.nih.gov/pubmed/34059859; https://xlink.rsc.org/?DOI=D1CP01726H; https://dx.doi.org/10.1039/d1cp01726h; https://pubs.rsc.org/en/content/articlelanding/2021/cp/d1cp01726h
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know