Red giant stars: From mixed modes to angular momentum
EAS Publications Series, ISSN: 1638-1963, Vol: 82, Page: 189-211
2019
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Solar-like oscillations are ubiquitous to low-mass stars from the main-sequence to the red-giant branch as demonstrated by the space-borne missions CoRoT and Kepler. Understanding the physical mechanisms governing their amplitudes as well as their behavior along with the star evolution is a prerequisite for interpreting the wealth of seismic data and for inferring stellar internal structure. In this paper, I discuss our current knowledge of mode amplitudes with particular emphasis on non-radial modes in red giants (hereafter mixed modes). Then, I will show how these modes permit to unveil the rotation of the inner-most layers of low-mass stars and how they put stringent constraints on the redistribution of angular momentum.
Bibliographic Details
EDP Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know