Deep Learning-Based Enhancement of Small Sample Liquefaction Data
International Journal of Geomechanics, ISSN: 1943-5622, Vol: 23, Issue: 9
2023
- 9Citations
- 25Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Findings from Hunan University in Earthquake Engineering Reported (Deep Learning-based Enhancement of Small Sample Liquefaction Data)
2023 SEP 05 (NewsRx) -- By a News Reporter-Staff News Editor at Robotics & Machine Learning Daily News Daily News -- A new study on
Article Description
The liquefaction of sands remains an important topic in geotechnical earthquake engineering. The most widely used evaluation method is based on in situ testing means such as cone penetration test, standard penetration test, and dynamic penetration test. Recently, machine learning has emerged as a promising approach for evaluating liquefaction potential problems. Due to the complexity of the site and the different standards of the available measurement methods, however, the problem of small sample liquefaction data severely restricts the development of machine learning in the prediction and mitigation of soil liquefaction. Here, we propose the Wasserstein Generative Adversarial Networks (WGAN) to expand the sample size of the liquefaction data set. The result shows that the proposed method (WGAN) learns the feature distribution of the original data set effectively and improves the accuracy of the model. By comparing with Synthetic Minority Oversampling Technique, the superiority of Wasserstein Generative Adversarial Networks in data generation is demonstrated, especially for discrete data. The effectiveness of the method (WGAN) on soil liquefaction prediction is further analyzed using the K-means algorithm. The method (WGAN) provides a good solution for earthquake engineering where it is difficult to obtain comprehensive data and improves further the application of deep learning.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know