Fabrication of silicon nanostructures by geometry controlled oxidation
Journal of Applied Physics, ISSN: 0021-8979, Vol: 101, Issue: 10
2007
- 23Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This work presents fabrication processes of nanostructures on a top silicon layer of silicon on insulator substrates. These processes rely on the properties shown by a trapezoidal cross section, as the one obtained by anisotropic wet etching, when reduced by dry oxidation. As demonstrated by numerical simulations, oxide stress limits the oxidation process if the minor base is large enough, compared with the thickness. If instead the minor base is small, a triangular section is generated during the oxidation process and a controlled strong reduction of the cross section, until the nanometer range is possible. The fabrication of a silicon nanowire longer than 1.5 μm and with a cross section of 15 nm, obtained with this technique, is shown and demonstrated. By providing zones with different initial cross section dimensions, constrictions can be fabricated in suitable positions and controlled by oxidation reduction, so that tunnel barriers can be obtained. Room temperature electrical characterization of tunneling structures, based on this fabrication technique, is presented and discussed. © 2007 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know