Calculating Kelvin force microscopy signals from static force fields
Applied Physics Letters, ISSN: 0003-6951, Vol: 96, Issue: 10
2010
- 26Citations
- 40Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We present an analytical formula to achieve numerical simulations of Kelvin force microscopy (KFM) signals from static force fields, which can be employed to describe amplitude-modulation or frequency-modulation KFM, as well as simultaneous topography and KFM modes for which the tip probe exhibits a nonzero oscillation during KFM imaging. This model is shown to account for side-capacitance and nonlinear effects taking place in KFM experiments, and can therefore be used conveniently to extract quantitative information from KFM experiments at the nanoscale. © 2010 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know