The influence of the parasitic current on the nonlinear electrical response of capacitively sensed cantilever resonators
Journal of Applied Physics, ISSN: 1089-7550, Vol: 117, Issue: 15
2015
- 5Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The influence of the parasitic feedthrough current on the nonlinear electrical response of capacitively sensed cantilever resonators is analyzed theoretically and experimentally. We show that the parasitic current strongly affects the shape of the nonlinear electrical frequency response of such devices. Specifically, we demonstrate that in the electrical measurement, the directions of the jumps from the different transitions between branches of stable solutions depend on the parasitic current and are independent of the jumps directions in the mechanical domain. As a consequence, the nonlinear electrical frequency response of cantilevers with capacitive readout presents three different hysteretic cycle topologies: counterclockwise, bow tie, and clockwise. This is in contrast with the only one topology (counterclockwise) that appears in the nonlinear mechanical frequency response.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know