Item response theory - A first approach
AIP Conference Proceedings, ISSN: 1551-7616, Vol: 1863
2017
- 1Citations
- 16Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The Item Response Theory (IRT) has become one of the most popular scoring frameworks for measurement data, frequently used in computerized adaptive testing, cognitively diagnostic assessment and test equating. According to Andrade et al. (2000), IRT can be defined as a set of mathematical models (Item Response Models - IRM) constructed to represent the probability of an individual giving the right answer to an item of a particular test. The number of Item Responsible Models available to measurement analysis has increased considerably in the last fifteen years due to increasing computer power and due to a demand for accuracy and more meaningful inferences grounded in complex data. The developments in modeling with Item Response Theory were related with developments in estimation theory, most remarkably Bayesian estimation with Markov chain Monte Carlo algorithms (Patz & Junker, 1999). The popularity of Item Response Theory has also implied numerous overviews in books and journals, and many connections between IRT and other statistical estimation procedures, such as factor analysis and structural equation modeling, have been made repeatedly (Van der Lindem & Hambleton, 1997). As stated before the Item Response Theory covers a variety of measurement models, ranging from basic one-dimensional models for dichotomously and polytomously scored items and their multidimensional analogues to models that incorporate information about cognitive sub-processes which influence the overall item response process. The aim of this work is to introduce the main concepts associated with one-dimensional models of Item Response Theory, to specify the logistic models with one, two and three parameters, to discuss some properties of these models and to present the main estimation procedures.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know