Infrared harmonic features of collagen models at B3LYP-D3: From amide bands to the THz region
Journal of Chemical Physics, ISSN: 1089-7690, Vol: 155, Issue: 7, Page: 075102
2021
- 6Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, we have studied the vibrational spectral features for the collagen triple helix using a dispersion corrected hybrid density functional theory (DFT-D) approach. The protein is simulated by an infinite extended polymer both in the gas phase and in a water micro-solvated environment. We have adopted proline-rich collagen models in line with the high content of proline in natural collagens. Our scaled harmonic vibrational spectra are in very good agreement with the experiments and allow for the peak assignment of the collagen amide I and III bands, supporting or questioning the experimental interpretation by means of vibrational normal modes analysis. Furthermore, we demonstrated that IR spectroscopy in the THz region can detect the small variations inherent to the triple helix helicity (10/3 over 7/2), thus elucidating the packing state of the collagen. So far, identifying the collagen helicity is only possible by means of crystal x-ray diffraction.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know