A falling fluid droplet in an oscillating flow field
Physics of Fluids, ISSN: 1089-7666, Vol: 36, Issue: 2
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We examine the flow in and around a falling fluid droplet in a vertically oscillating flow. We assume axisymmetric Stokes flow, and for small deformations to the droplet, the governing equations can be linearized leading to an infinite system of linear ordinary differential equations. In this study, we have analytically solved the problem in the small-capillary limit. We note that the solution locally breaks down at the poles of the droplet. The drag and center of the mass were also obtained. In the case when only odd modes are present, the droplet shows three-dimensional axisymmetric heart-shaped solutions oscillating vertically in time. When only even modes are present, the droplet exhibits axisymmetric stretching and squeezing.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know