Noncommutative hyper-Kähler structure for K3 surfaces
Journal of Physics A: Mathematical and General, ISSN: 0305-4470, Vol: 36, Issue: 20, Page: 5655-5662
2003
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We apply the method of algebraic deformation to N-tuple of algebraic K3 surfaces. When N = 3, we show that the deformed triplet of algebraic K3 surfaces exhibits a deformed hyper-Kähler structure. The deformation moduli space of this family of noncommutative K3 surfaces turns out to be of dimension 57, which is three times that of complex deformations of algebraic K3 surfaces.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0037501388&origin=inward; http://dx.doi.org/10.1088/0305-4470/36/20/320; https://iopscience.iop.org/article/10.1088/0305-4470/36/20/320; https://dx.doi.org/10.1088/0305-4470/36/20/320; https://validate.perfdrive.com/9730847aceed30627ebd520e46ee70b2/?ssa=82fa0c0c-92ae-4662-882b-5d648d0c478b&ssb=22745228507&ssc=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F0305-4470%2F36%2F20%2F320&ssi=c37c4f5e-cnvj-4c5d-9c68-82d8fe4d0755&ssk=botmanager_support@radware.com&ssm=523994151924246151255543894030541809&ssn=02cc0e983b10b601a3913be02fc6634d4306fe105911-65fe-48dc-86d8b0&sso=0d77a150-9319bfde79b545c3c4f010f57ec544855b4d65ab9b341c4f&ssp=76630458131726283226172636096522516&ssq=24622248068064150832063731443550648988838&ssr=NTIuMy4yMTcuMjU0&sst=com.plumanalytics&ssu=&ssv=&ssw=&ssx=eyJyZCI6ImlvcC5vcmciLCJfX3V6bWYiOiI3ZjYwMDBmY2NjNzQxOC1mYzFiLTRjNmEtODMwYS1iMjY5YmYxNWM5NTIxNzI2MjYzNzMxNDQwMTE2OTQ5MDIyLTZlN2U3ZTc4NjA3NTk5YTgxMjU1MzYiLCJ1em14IjoiN2Y5MDAwMzZjZDcxYjQtYzE1Yy00OTVhLWFjNjEtNTM4YWIxMWM0ZjdhMy0xNzI2MjYzNzMxNDQwMTE2OTQ5MDIyLTMyM2Y0M2YzYTIyNmRmMDkxMjU1MjQifQ==
IOP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know