Metformin Regulates the Expression of SK2 and SK3 in the Atria of Rats with Type 2 Diabetes Mellitus Through the NOX4/p38MAPK Signaling Pathway
Journal of Cardiovascular Pharmacology, ISSN: 1533-4023, Vol: 72, Issue: 5, Page: 205-213
2018
- 10Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- CrossRef6
- Captures15
- Readers15
- 15
Article Description
We previously found that metformin regulates the ion current conducted by the small conductance calcium-activated potassium channels (SK channels) in the atria of rats with type 2 diabetes mellitus (T2DM) as well as the mRNA and protein expression of the SK2 and SK3 subtypes of SK channels. In this study, we hypothesized that the nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4)/p38 mitogen-activated protein kinase (p38MAPK) signaling pathway was involved in the metformin-mediated regulation of SK2 and SK3 expression in the atria of rats with T2DM. We randomly divided Wistar rats into the control group, the untreated T2DM group, the metformin-treated group, the group receiving subcutaneous injections of the nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor diphenyleneiodonium (DPI), and the group receiving tail vein injections of the p38MAPK agonist anisomycin. Real-time polymerase chain reaction, Western blot, and immunohistochemistry were applied to examine the expression levels of SK2, SK3, NOX4, and phospho-p38MAPK (p-p38MAPK) mRNAs and proteins in the atrial tissue of relevant groups. We observed that the expression levels of NOX4 mRNA and protein and p-p38MAPK protein were significantly elevated in the atria of rats with T2DM compared with the control group. In addition, SK2 protein expression was reduced, whereas SK3 protein expression was increased. The 8-week treatment with metformin markedly reduced the expression levels of NOX4 mRNA and protein and p-p38MAPK protein, upregulated the SK2 expression, and downregulated the SK3 expression. Tail vein injection with anisomycin significantly increased the p-p38MAPK expression while further inhibiting the expression of SK2 and enhancing the expression of SK3. Subcutaneous injection with DPI considerably inhibited the expression of NOX4, further enhanced the expression of SK2 and suppressed the expression of SK3. In addition, subcutaneous injection with DPI significantly suppressed the phosphorylation of p38MAPK. In conclusion, the NOX4/p38MAPK signaling pathway mediates the downregulation of SK2 and the upregulation of SK3 in the atria of rats with T2DM. Long-term metformin treatment upregulates SK2 protein expression and downregulates SK3 protein expression by inhibiting the NOX4/p38MAPK signaling pathway.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85056286740&origin=inward; http://dx.doi.org/10.1097/fjc.0000000000000615; http://www.ncbi.nlm.nih.gov/pubmed/30188871; https://journals.lww.com/00005344-201811000-00001; https://dx.doi.org/10.1097/fjc.0000000000000615; https://journals.lww.com/cardiovascularpharm/Abstract/2018/11000/Metformin_Regulates_the_Expression_of_SK2_and_SK3.1.aspx
Ovid Technologies (Wolters Kluwer Health)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know