Change of the surface electronic structure of Au(111) by a monolayer MgO(001) film
Physical Review B - Condensed Matter and Materials Physics, ISSN: 1098-0121, Vol: 84, Issue: 7
2011
- 31Citations
- 33Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Monolayer films of MgO(001) have been prepared on an Au(111) surface and explored by means of scanning tunneling microscopy (STM) and spectroscopy. The symmetry mismatch between the hexagonal substrate and the squared overlayer results in the formation of a (6×1) superlattice, as revealed from the distinct stripe pattern observed in the STM images. The presence of the oxide film also modifies the potential situation at the interface, which induces a substantial upshift of the Shockley-type surface band on Au(111). The resulting MgO/Au interface band is characterized by a pseudogap at around 500 mV that opens at the position of the new Brillouin zone of the enlarged (6×1) unit cell. In addition the oxide layer gives rise to a drastic decrease of the Au(111) work function, as deduced from the energy position of the first field-emission resonance on the bare and MgO-covered surface. The work-function drop is explained by an interfacial charge transfer from the oxide film into the electro-negative gold surface. © 2011 American Physical Society.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=80052416147&origin=inward; http://dx.doi.org/10.1103/physrevb.84.075456; https://link.aps.org/doi/10.1103/PhysRevB.84.075456; http://harvest.aps.org/v2/journals/articles/10.1103/PhysRevB.84.075456/fulltext; http://link.aps.org/article/10.1103/PhysRevB.84.075456
American Physical Society (APS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know