An examination of the importance of big data analytics in supply chain agility development: A dynamic capability perspective
Management Research Review, ISSN: 2040-8269, Vol: 41, Issue: 10, Page: 1201-1219
2018
- 70Citations
- 250Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Purpose: This paper aims to investigate the influence of big data analytics (BDA) personnel expertise capabilities in the development of supply chain (SC) agility. Based on extant literature, the study explores the role of BDA technical knowledge, BDA technology management knowledge, BDA business knowledge and BDA relational knowledge in SC agility development. Furthermore, the author also explores the inter-relationships among these four BDA personnel expertise capabilities. Design/methodology/approach: An expert team consisting of IT practitioners (with a minimum experience of five years) were chosen to comment and modify the established scale items of the constructs used in the study. Subsequently, the measures were further pre-tested with 61 students specializing in computer science and information technology. The final survey was mailed to 651 IT professionals with a minimum experience of five years or more in an allied field. Repeated follow-ups and reminders resulted in 176 completed responses. The responses were analysed using partial least squares in SmartPLS 2.0.M3. Findings: Findings suggested that BDA technology management knowledge, BDA business knowledge and BDA relational knowledge are prominent enablers of SC agility. Furthermore, BDA technology management knowledge is an essential precursor of BDA technical knowledge and BDA business knowledge. Originality/value: The study is the foremost in addressing the importance of BDA personnel expertise capabilities in the development of SC agility. Furthermore, it is also the foremost in exploring the inter-relationships among the BDA personnel expertise capabilities.
Bibliographic Details
Emerald
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know