Pseudo-Haptics Survey: Human-Computer Interaction in Extended Reality and Teleoperation
IEEE Access, ISSN: 2169-3536, Vol: 12, Page: 80442-80467
2024
- 3Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Pseudo-haptic techniques are becoming increasingly popular in human-computer interaction. They replicate haptic sensations by leveraging primarily visual feedback rather than mechanical actuators. These techniques bridge the gap between the real and virtual worlds by exploring the brain's ability to integrate visual and haptic information. One of the many advantages of pseudo-haptic techniques is that they are cost-effective, portable, and flexible. They eliminate the need for direct attachment of haptic devices to the body, which can be heavy and large and require a lot of power and maintenance. Recent research has focused on applying these techniques to extended reality and mid-air interactions. To better understand the potential of pseudo-haptic techniques, the authors developed a novel taxonomy encompassing tactile feedback, kinesthetic feedback, and combined categories in multimodal approaches, ground not covered by previous surveys. This survey highlights multimodal strategies and potential avenues for future studies, particularly regarding integrating these techniques into extended reality and collaborative virtual environments.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know