Distributed compression and transmission with energy harvesting sensors
IEEE International Symposium on Information Theory - Proceedings, ISSN: 2157-8095, Vol: 2015-June, Page: 1139-1143
2015
- 6Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
We determine the achievable distortion region when the correlated source samples are transmitted by two energy harvesting (EH) sensor nodes to the destination over orthogonal fading channels. A time slotted system is considered in which the energy and the source samples arrive at the beginning of each time slot (TS), and both the correlation between source samples at the two nodes and fading coefficients change over time but remain constant in each TS. Assuming non-causal knowledge of these time-varying source statistics, energy arrivals and the channel gains, i.e., under the offline optimization framework, we obtain the optimal transmission and coding schemes that achieve the points on the Pareto boundary of the total distortion region. An iterative directional 2D waterfilling algorithm is proposed to obtain two specific points on this boundary.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know