Meta-learning Based Beamforming Design for MISO Downlink
IEEE International Symposium on Information Theory - Proceedings, ISSN: 2157-8095, Vol: 2021-July, Page: 2954-2959
2021
- 17Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Downlink beamforming is an essential technology for wireless cellular networks; however, the design of beamforming vectors that maximize the weighted sum rate (WSR) is an NP-hard problem and iterative algorithms are typically applied to solve it. The weighted minimum mean square error (WMMSE) algorithm is the most widely used one, which iteratively minimizes the WSR and converges to a local optimal. Motivated by the recent developments in meta-learning techniques to solve non-convex optimization problems, we propose a meta-learning based iterative algorithm for WSR maximization in a MISO downlink channel. A long-short-term-memory (LSTM) network based meta-learning model is built to learn a dynamic optimization strategy to update the variables iteratively. The learned strategy aims to optimize each variable in a less greedy manner compared to WMMSE, which updates variables by computing their first order stationary points at each iteration step. The proposed algorithm outperforms WMMSE significantly in the high signal to noise ratio (SNR) regime and achieves comparable performance when the SNR is low.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know