Development of a Two-Dimensional Simplified Tool for the Analysis of the Cooling of the ITER TF Winding Pack
IEEE Transactions on Applied Superconductivity, ISSN: 1051-8223, Vol: 28, Issue: 3, Page: 1-4
2018
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures5
- Readers5
Article Description
The cooling of the ITER toroidal field (TF) coils winding pack is guaranteed by the circulation of supercritical helium (He) in seven hydraulic circuits corresponding to the NbSn cable in conduit conductors, and in 74 channels devoted to the cooling of the stainless steel case supporting the winding pack. A tool entirely developed inside ANSYS with the APDL language has been created with the aim of computing the temperature distribution in the TF winding pack in different poloidal locations. The tool also allows the assessment of the He temperature during plasma operation in the case cooling channels. The considered heat load is the volumetric nuclear heating computed with the MCNP code in 32 poloidal segments of a TF coil. For each segment, a two-dimensional (2-D) finite-element model is built and a thermal analysis carried out by applying the corresponding heat load, whereas a 1-D thermal-hydraulic code solves the helium transport inside the structure. Steady-state analyses have been done considering the baseline pancake wound configuration. In a second step, a preliminary transient analysis has been carried out, considering the actual ramp up and ramp down of the nuclear heating.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know