Parameter identification of linear induction motor model in extended range of operation by means of input-output data
IEEE Transactions on Industry Applications, ISSN: 0093-9994, Vol: 50, Issue: 2, Page: 959-972
2014
- 43Citations
- 33Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper proposes a technique for the off-line estimation of the electrical parameters of the equivalent circuit of linear induction machines (LIM), taking into consideration the end effects, and focuses on the application of an algorithm based on the minimization of a suitable cost function involving the differences of measured and computed by simulation inductor current components. This method exploits an entire start-up transient of the LIM to estimate all the 4 electrical parameters of the machine (R, L , σ L, T). It proposes also a set of tests to be made to estimate the variation of the magnetic parameters of the LIM versus the magnetizing current as well as the magnetizing curve of the machine. Moreover, a methodology for the estimation of the mechanical parameters of the model is proposed as well. The proposed methodology has been verified experimentally on suitably developed test set-up. © 1972-2012 IEEE.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know