A three-dimensional angular scattering response including path powers
IEEE Transactions on Wireless Communications, ISSN: 1536-1276, Vol: 11, Issue: 4, Page: 1321-1333
2012
- 8Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, the angular power spectrum exhibited under a three-dimensional (3-D) Gaussian scattering distribution at fixed observation points in space is investigated. Typically, these correspond to the mobile and base units, respectively. Unlike other spatial channel models, the derived model accounts for the distance to each scatterer from the observation point, and transforms distances into power values under the assumption of free-space propagation. The proposed 3-D spatial channel model follows a non-central approach in terms of the scatterer distribution in space, which means that the angular power field at the base unit need not be due to a scatterer distribution centered exactly at the mobile. Derivations are provided for the angular and power domains. As shown, by conditioning the distance, the angular field reduces to the von-Mises Fisher distribution. Most importantly, this work provides a theoretical backup to the Gaussian angular power spectrum observed in radio propagation channel measurements, introducing a formal theoretical framework consistent with the experimental investigations found in literature. More specifically, our findings show that a Gaussian scatterer distribution in space gives rise to a Gaussian-like angular power spectrum and a Gaussian angular power density in the azimuth and elevations fields. By introducing the notion of distance into the framework, the proposed 3-D spatial channel model can be used to evaluate performance of current and future multi-element wireless communication networks. © 2012 IEEE.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know