Digital Data Forgetting: A Machine Learning Approach
ISMSIT 2018 - 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedings, Page: 1-4
2018
- 3Citations
- 18Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Digital transformation of the world goes very fast during last two decades. Today, data is power and very important. Firstly, magnetic tapes and then digital data storages have been used to collect all data. After this process, big data and its tool machine learning became very popular in both literature and industry. People use machine learning in order to obtain meaningful information from the big data. It brings valuable planning results. However, nowadays it is quite hard to collect and store all digital data to computers. This process is expensive and we will not have enough space to store data in the future. Therefore, we need and propose 'Digital Data Forgetting' phrase with machine learning approach. With this digital/software solution, we will have more valuable data and will be able to erase the rest of them. We called this operation 'Big Cleaning'. In this article, we use a data set to get and extract more valuable data with principal component analysis (PCA), deep autoencoder and k-nearest neighbor machine learning methods in the experimental analysis section.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know