Sparse Phase Retrieval via Truncated Amplitude Flow

Citation data:

IEEE Transactions on Signal Processing, ISSN: 1053-587X, Vol: 66, Issue: 2, Page: 479-491

Publication Year:

No metrics available.

Gang Wang, Liang Zhang, Georgios B. Giannakis, Mehmet Akcakaya, Jie Chen
Institute of Electrical and Electronics Engineers (IEEE)
Computer Science, Engineering
article description
This paper develops a novel linear-time algorithm, termed SPARse Truncated Amplitude flow (SPARTA), to reconstruct a sparse signal from a small number of magnitude-only measurements. It deals with what is also known as sparse phase retrieval (PR), which is NP-hard in general and emerges in many science and engineering applications. Upon formulating sparse PR as an amplitude-based nonconvex optimization task, SPARTA works iteratively in two stages: In stage one, the support of the underlying sparse signal is recovered using an analytically well-justified rule, and subsequently a sparse orthogonality-promoting initialization is obtained via power iterations restricted on the support; and, in stage two, the initialization is successively refined by means of hard thresholding based truncated gradient iterations. SPARTA is a simple yet effective, scalable, and fast sparse PR solver. On the theoretical side, for any $n$-dimensional $k$-sparse ($k\ll n$) signal $\bm{x}$ with minimum (in modulus) nonzero entries on the order of $(1/\sqrt{k})\|\bm{x}\|_2$, SPARTA recovers the signal exactly (up to a global unimodular constant) from about $k^2\log n$ random Gaussian measurements with high probability. Furthermore, SPARTA incurs computational complexity on the order of $k^2n\log n$ with total runtime proportional to the time required to read the data, which improves upon the state-of-the-art by at least a factor of $k$. Finally, SPARTA is robust against additive noise of bounded support. Extensive numerical tests corroborate markedly improved recovery performance and speedups of SPARTA relative to existing alternatives.

This article has 0 Wikipedia reference.