Association between integration structure and functional evolution in the opercular four-bar apparatus of the threespine stickleback, Gasterosteus aculeatus (Pisces: Gasterosteidae)
Biological Journal of the Linnean Society, ISSN: 0024-4066, Vol: 111, Issue: 2, Page: 375-390
2014
- 19Citations
- 30Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Phenotypes may evolve to become integrated in response to functional demands. Once evolved, integrated phenotypes, often modular, can also influence the trajectory of subsequent responses to selection. Clearly, connecting modularity and functionally adaptive evolution has been challenging. The teleost skull and jaw structures are useful for understanding this connection because of the key roles that these structures play in feeding in novel environments with different prey resources. In the present study, we examined such a structure in the threespine stickleback: the opercular four-bar lever that functions in jaw opening. Comparing oceanic and two fresh-water populations, we find marked phenotypic divergence in the skull opercular region, and the major axes of morphological and functional variation of the lever are found to be highly correlated. All three populations share the same global skull integration structure, and a conserved, strongly-supported modular organization is evident in the region encompassing the lever. Importantly, a boundary between two modules that subdivides the lever apparatus corresponds to the region of most prominent morphological evolution. The matched modular phenotypic and functional architecture of head and jaw structures of stickleback therefore may be important for facilitating their rapid adaptive transitions between highly divergent habitats. © 2013 The Linnean Society of London.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84892507234&origin=inward; http://dx.doi.org/10.1111/bij.12203; https://academic.oup.com/biolinnean/article-lookup/doi/10.1111/bij.12203; https://dx.doi.org/10.1111/bij.12203; https://academic.oup.com/biolinnean/article-abstract/111/2/375/2415785?redirectedFrom=fulltext
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know