Ecologically Sustainable Exploitation Rates—A multispecies approach for fisheries management
Fish and Fisheries, ISSN: 1467-2979, Vol: 20, Issue: 5, Page: 952-961
2019
- 6Citations
- 39Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Fisheries management is slowly evolving from its traditional single-species focus to a more holistic ecosystem-based approach. Yet, limits for exploitation are almost always set based on single-species models, treating species as isolated entities. This is problematic since the sustainability of a fishery hinges on its effects on the exploited community as a whole. Here, we develop a novel analytical approach of estimating exploitation rates that are sustainable with respect to the state of whole fish communities. Our approach simultaneously addresses species interactions, environmental covariates and natural variability of population sizes, yet it is framed around a simple and accessible objective. We derive Ecologically Sustainable Exploitation Rates, that is exploitation rates associated with a maximum acceptable probability (determined by management) that any interacting species decreases to an unacceptably low population size. Using models fitted to an exploited fish community, we show how accounting for species interactions constrains the possibilities for ecologically sustainable exploitation. The conventional omission of species interactions may thus result in overestimated exploitation limits. Moreover, our application rendered a counterintuitive result: it suggests that the exploitation of one species should increase, as compared to mean historical levels, for the purpose of conservation of the community as a whole. Such insights could impossibly be gained using single-species approaches, illustrating the need to adopt multispecies models in fisheries management. Analytical derivation of Ecologically Sustainable Exploitation Rates offers a mean to do so.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know