Colorado Ultraviolet Transit Experiment: a mission development history and future possibilities from the National Aeronautics and Space Administration's first ultraviolet astronomy CubeSat
Journal of Astronomical Telescopes, Instruments, and Systems, ISSN: 2329-4221, Vol: 10, Issue: 3
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The National Aeronautics and Space Administration's (NASA) first dedicated exoplanetary spectroscopy mission, the Colorado Ultraviolet Transit Experiment (CUTE), is used to search for signatures of atmospheric escape, the process by which constituent gases depart a planetary atmosphere. Through transit spectroscopy, the signs of escape driven by the high level of ultraviolet (UV) radiation from their parent stars are detectable around close-in planets. CUTE is a 6U CubeSat developed and operated by the Laboratory for Atmospheric and Space Physics (LASP) of the University of Colorado in Boulder, Colorado, United States; it looks for these signs of escape by surveying close-in extrasolar planets in the near-UV (2479 to 3306 A) with 208×84 mm Cassegrain telescope-fed, UV-enhanced charged coupled device. Funded through a NASA ROSES proposal in 2017 and forced to deal with a worldwide pandemic during the heart of its fabrication and test program, CUTE has demonstrated the capability of small satellites to launch on schedule and perform challenging astronomical measurements. We will highlight the CUTE mission's science objectives, implementation, and tribulations on its road to delivering a successful science program while discussing lessons learned pertaining to the development of CubeSat programs and the application of those lessons for a CUTE-style follow-on mission in the future.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85206201061&origin=inward; http://dx.doi.org/10.1117/1.jatis.10.3.030301; https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes-Instruments-and-Systems/volume-10/issue-03/030301/Colorado-Ultraviolet-Transit-Experiment--a-mission-development-history-and/10.1117/1.JATIS.10.3.030301.full; https://dx.doi.org/10.1117/1.jatis.10.3.030301; https://www.spiedigitallibrary.org/access-suspended
SPIE-Intl Soc Optical Eng
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know