FaceLab: A tool for performance evaluation of face recognition strategies
Proceedings of SPIE - The International Society for Optical Engineering, ISSN: 0277-786X, Vol: 6061
2006
- 1Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
- Captures7
- Readers7
Conference Paper Description
This paper presents FaceLab, an innovative, open environment created to evaluate the performance of face recognition strategies. It simplifies, through an easy-to-use graphical interface, the basic steps involved in testing procedures such as data organization and preprocessing, definition and management of training and test sets, definition and execution of recognition strategies and automatic computation of performance measures. The user can extend the environment to include new algorithms, allowing the definition of innovative recognition strategies. The performance of these strategies can be automatically evaluated and compared by the tool, which computes several performance measures for both identity verification and identification scenarios. © 2006 SPIE-IS&T.
Bibliographic Details
SPIE-Intl Soc Optical Eng
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know