PlumX Metrics
Embed PlumX Metrics

Compartmentalization and Antiviral Effect of Efavirenz Metabolites in Blood Plasma, Seminal Plasma, and Cerebrospinal Fluid

Drug Metabolism and Disposition, ISSN: 0090-9556, Vol: 41, Issue: 2, Page: 422-429
2013
  • 31
    Citations
  • 0
    Usage
  • 30
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Most Recent News

EFV Pharmacokinetics & Pharmacogenomics in Older HIV-infected Patients; EFV

STUDY INFORMATION OFFICIAL TITLE: Efavirenz Pharmacokinetics and Pharmacogenomics in Older HIV-infected Patients CURRENT STATUS: Completed: 12 Months STUDY TYPE: Observational [Patient Registry] SPONSOR AGENCY:University of

Article Description

Efavirenz (EFV) is one of the most commonly prescribed antiretrovirals for use in the treatment of human immunodeficiency virus (HIV) infection. EFV is extensively metabolized by cytochrome P450 to a number of oxygenated products; however, the pharmacologic activity and distribution of these metabolites in anatomic compartments have yet to be explored. The systemic distribution of EFV oxidative metabolites was examined in blood plasma, seminal plasma, and cerebrospinal fluid from subjects on an EFV-based regimen. The 8-hydroxy EFV metabolite was detected in blood plasma, seminal plasma, and cerebrospinal fluid, with median concentrations of 314.5 ng/ml, 358.5 ng/ml, and 3.37 ng/ml, respectively. In contrast, 7-hydroxy and 8,14-hydroxy EFV were only detected in blood plasma and seminal plasma with median concentrations of 8.84 ng/ml and 10.23 ng/ml, and 5.63 ng/ml and 5.43 ng/ml, respectively. Interestingly, protein-free concentrations of metabolites were only detectable in seminal plasma, where a novel dihdyroxylated metabolite of EFV was also detected. This accumulation of protein-free EFV metabolites was demonstrated to be the result of differential protein binding in seminal plasma compared with that of blood plasma. In addition, the oxidative metabolites of EFV did not present with any significant pharmacologic activity toward HIV-1 as measured using an HIV green fluorescent protein single-round infectivity assay. This study is the first to report the physiologic distribution of metabolites of an antiretroviral into biologic compartments that the virus is known to distribute and to examine their anti-HIV activity. These data suggest that the male genital tract may be a novel compartment that should be considered in the evaluation of drug metabolite exposure.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know