PlumX Metrics
Embed PlumX Metrics

On the problem of nucleation (cell formation) in self-organization of protein nanostructures in vitro and in vivo

Technical Physics, ISSN: 1063-7842, Vol: 50, Issue: 6, Page: 780-786
2005
  • 2
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

No convincing theory or hypothesis concerning the origin of biological cells exists today. Insight into the problem is difficult, because an empiric model of cell origination and division at the crucial phase of life, self-organization of protein nanostructures, is lacking. It has been shown experimentally that protein nanostructures exhibit signs of self-organization when an open far-from-equilibrium protein-water system condenses in vitro. In other words, to be active, protein must be in the nonequilibrium state. Such a form of self-organization is accompanied by nucleation and the formation of defects, which divide the protein film into domains ("cells") with nuclei. This type of structuring in the nonequilibrium (active) protein may be viewed as a crude empiric model of protein nucleation, since it includes the formation and division (self-organization) of biological cells, the origination of which, in turn, is intimately related to the self-organization of protein at the nanolevel. The reason for the similarity of the basic processes is identical conditions of protein condensation in vitro and in vivo. In both cases, when water evaporates rapidly from an open water-protein system that is far from thermodynamic equilibrium, the conditions necessary for protein nonequilibrium nanostructures be self-organized with nucleation in the form of nucleus-containing "cells" are set. © 2005 Pleiades Publishing, Inc.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know