Features of Foreshock Transients at Planetary Bow Shocks
Solar System Research, ISSN: 1608-3423, Vol: 57, Issue: 2, Page: 133-142
2023
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Abstract—: In front of the bow shock with a quasi-parallel configuration of the interplanetary magnetic field, there exists a region called a foreshock, in which many nonstationary processes take place, the largest of which are collectively named “foreshock transients.” The size of these formations can reach tens of Earth radii, which significantly influences the nature of the solar wind interaction with the magnetosphere. Some types of foreshock transients are also observed at other planets, including those without their own global magnetic field, which indicates the universality of these phenomena. This article lists the most well-known nonstationary processes occurring in the foreshock, as well as provides current ideas about the formation mechanisms of the largest foreshock transients.
Bibliographic Details
Pleiades Publishing Ltd
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know