Current Status and Future Prospects of the SNO+ Experiment

Citation data:

Advances in High Energy Physics, ISSN: 1687-7357, Vol: 2016, Page: 1-21

Publication Year:
2016
Usage 19
Abstract Views 19
Captures 20
Readers 19
Exports-Saves 1
Mentions 2
References 2
Social Media 1
Shares, Likes & Comments 1
Citations 23
Citation Indexes 23
DOI:
10.1155/2016/6194250
Author(s):
Andringa, S., Arushanova, E., Asahi, S., Askins, M., Auty, D. J., Back, A. R., Barnard, Z., Barros, N., Beier, E. W., Bialek, A., Biller, S. D., Blucher, E., Bonventre, R., Braid, D., Caden, E., Callaghan, E., Caravaca, J., Carvalho, J., Cavalli, L., Chauhan, D., Chen, M., Chkvorets, O., Clark, K., Cleveland, B., Coulter, I. T., Cressy, D., Dai, X., Darrach, C., Davis-Purcell, B., Deen, R., Depatie, M. M., Descamps, F., Di Lodovico, F., Duhaime, N., Duncan, F., Dunger, J., Falk, E., Fatemighomi, N., Ford, R., Gorel, P., Grant, C., Grullon, S., Guillian, E., Hallin, A. L., Hallman, D., Hans, S., Hartnell, J., Harvey, P., Hedayatipour, M., Heintzelman, W. J., Helmer, R. L., Hreljac, B., Hu, J., Iida, T., Jackson, C. M., Jelley, N. A., Jillings, C., Jones, C., Jones, P. G., Kamdin, K., Kaptanoglu, T., Kaspar, J., Keener, P., Khaghani, P., Kippenbrock, L., Klein, J. R., Knapik, R., Kofron, J. N., Kormos, L. L., Korte, S., Kraus, C., Krauss, C. B., Labe, K., Lam, I., Lan, C., Land, B. J., Langrock, S., LaTorre, A., Lawson, I., Lefeuvre, G. M., Leming, E. J., Lidgard, J., Liu, X., Liu, Y., Lozza, V., Maguire, S., Maio, A., Majumdar, K., Manecki, S., Maneira, J., Marzec, E., Mastbaum, A., McCauley, N., McDonald, A. B., McMillan, J. E., Mekarski, P., Miller, C., Mohan, Y., Mony, E., Mottram, M. J., Novikov, V., O’Keeffe, H. M., O’Sullivan, E., Orebi Gann, G. D., Parnell, M. J., Peeters, S. J. M., Pershing, T., Petriw, Z., Prior, G., Prouty, J. C., Quirk, S., Reichold, A., Robertson, A., Rose, J., Rosero, R., Rost, P. M., Rumleskie, J., Schumaker, M. A., Schwendener, M. H., Scislowski, D., Secrest, J., Seddighin, M., Segui, L., Seibert, S., Shantz, T., Shokair, T. M., Sibley, L., Sinclair, J. R., Singh, K., Skensved, P., Sörensen, A., Sonley, T., Stainforth, R., Strait, M., Stringer, M. I., Svoboda, R., Tatar, J., Tian, L., Tolich, N., Tseng, J., Tseung, H. W. C., Van Berg, R., Vázquez-Jáuregui, E., Virtue, C., von Krosigk, B., Walker, J. M. G., Walker, M., Wasalski, O., Waterfield, J., White, R. F., Wilson, J. R., Winchester, T. J., Wright, A., Yeh, M., Zhao, T., Zuber, K. Show More Hide
Publisher(s):
Hindawi Limited
Tags:
Physics and Astronomy
article description
SNO+ is a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0ββ) ofTe. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg ofTe, with an expected effective Majorana neutrino mass sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0νββ Phase I is foreseen for 2017.

This article has 2 Wikipedia mentions.

SNO+

SNO+ is a physics experiment designed to search for neutrinoless double beta decay, with secondary measurements of proton–electron–proton (pep) solar neutrinos, geoneutrinos from radioactive decays in the Earth, and reactor neutrinos. It is under construction (as of February 2...

Read full Article

Geoneutrino

A geoneutrino is a neutrino or antineutrino emitted in decay of radionuclide naturally occurring in the Earth. Neutrinos, the lightest of the known subatomic particles, lack measurable electromagnetic properties and interact only via the weak nuclear force when ignoring gravit...

Read full Article