Current Status and Future Prospects of the SNO+ Experiment

Citation data:

Advances in High Energy Physics, ISSN: 1687-7365, Vol: 2016, Page: 1-21

Publication Year:
Usage 19
Abstract Views 19
Captures 221
Readers 220
Exports-Saves 1
Mentions 3
References 3
Social Media 24
Tweets 12
Shares, Likes & Comments 12
Citations 56
Citation Indexes 56
Repository URL:
Collaboration, SNO+; :; Andringa, S.; Arushanova, E.; Asahi, S.; Askins, M.; Auty, D. J.; Back, A. R.; Barnard, Z.; Barros, N.; Beier, E. W.; Bialek, A.; Biller, S. D.; Blucher, E.; Bonventre, R.; Braid, D.; Caden, E.; Callaghan, E.; Caravaca, J.; Carvalho, J.; Cavalli, L.; Chauhan, D.; Chen, M.; Chkvorets, O.; Clark, K.; Cleveland, B.; Coulter, I. T.; Cressy, D.; Dai, X.; Darrach, C.; Davis-Purcell, B.; Deen, R.; Depatie, M. M.; Descamps, F.; Di Lodovico, F.; Duhaime, N.; Duncan, F.; Dunger, J.; Falk, E.; Fatemighomi, N.; Ford, R.; Gorel, P.; Grant, C.; Grullon, S.; Guillian, E.; Hallin, A. L.; Hallman, D.; Hans, S.; Hartnell, J.; Harvey, P.; Hedayatipour, M.; Heintzelman, W. J.; Helmer, R. L.; Hreljac, B.; Hu, J.; Iida, T.; Jackson, C. M.; Jelley, N. A.; Jillings, C.; Jones, C.; Jones, P. G.; Kamdin, K.; Kaptanoglu, T.; Kaspar, J.; Keener, P.; Khaghani, P.; Kippenbrock, L.; Klein, J. R.; Knapik, R.; Kofron, J. N.; Kormos, L. L.; Korte, S.; Kraus, C.; Krauss, C. B.; Labe, K.; Lam, I.; Lan, C.; Land, B. J.; Langrock, S.; LaTorre, A.; Lawson, I.; Lefeuvre, G. M.; Leming, E. J.; Lidgard, J.; Liu, X.; Liu, Y.; Lozza, V.; Maguire, S.; Maio, A.; Majumdar, K.; Manecki, S.; Maneira, J.; Marzec, E.; Mastbaum, A.; McCauley, N.; McDonald, A. B.; McMillan, J. E.; Mekarski, P.; Miller, C.; Mohan, Y.; Mony, E.; Mottram, M. J.; Novikov, V.; O'Keeffe, H. M.; O'Sullivan, E.; Gann, G. D. Orebi; Parnell, M. J.; Peeters, S. J. M.; Pershing, T.; Petriw, Z.; Prior, G.; Prouty, J. C.; Quirk, S.; Reichold, A.; Robertson, A.; Rose, J.; Rosero, R.; Rost, P. M.; Rumleskie, J.; Schumaker, M. A.; Schwendener, M. H.; Scislowski, D.; Secrest, J.; Seddighin, M.; Segui, L.; Seibert, S.; Shantz, T.; Shokair, T. M.; Sibley, L.; Sinclair, J. R.; Singh, K.; Skensved, P.; Soerensen, A.; Sonley, T.; Stainforth, R.; Strait, M.; Stringer, M. I.; Svoboda, R.; Tatar, J.; Tian, L.; Tolich, N.; Tseng, J.; Tseung, H. W. C.; Van Berg, R.; Vázquez-Jáuregui, E.; Virtue, C.; von Krosigk, B.; Walker, J. M. G.; Walker, M.; Wasalski, O.; Waterfield, J.; White, R. F.; Wilson, J. R.; Winchester, T. J.; Wright, A.; Yeh, M.; Zhao, T.; Zuber, K. Show More Hide
Hindawi Limited; Advances in High Energy Physics
Physics and Astronomy; Physics - Instrumentation and Detectors; High Energy Physics - Experiment
Most Recent Tweet View All Tweets
review description
SNO+ is a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0ββ) of Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0νββ Phase I is foreseen for 2017.