Properties of a-SiGe thin films on glass by Co-sputtering for photovoltaic absorber application
Journal of Nanoscience and Nanotechnology, ISSN: 1533-4899, Vol: 15, Issue: 11, Page: 9275-9280
2015
- 10Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Non-hydrogenated amorphous Silicon-Germanium (a-SiGe) thin films were deposited at two different base pressures by RF magnetron co-sputtering. Moreover, an ex-situ thermal annealing was carried out to investigate the material properties to be suitable as the bottom cell of multi-junction solar cells. Compositional study of the films using EDX showed Ge-rich thin films with 75 atomic% of Ge. XRD reflection study implied that all samples were entirely amorphous in nature. However, a significant improvement of morphology possibly due to low base pressure was observed while thermal annealing caused peening and reduction of surface inhomogeneity in both as-sputtered films. UV-VIS-IR analysis confirmed the FESEM results. The highest transmittance was observed in the as-deposited sample grown at 4×10 Torr, which however reduced after thermal annealing. Tauc's model was implied for band gap determination and band gap energy as low as 1.07 eV was found in the annealed sample grown at lower base pressure (4×10 Torr). Electrical properties of films were investigated by Hall effect measurement system and results found the reduction of resistivity with the same trend of optical band gap energy.
Bibliographic Details
American Scientific Publishers
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know