Undulating fins produce off-axis thrust and flow structures
Journal of Experimental Biology, ISSN: 0022-0949, Vol: 217, Issue: 2, Page: 201-213
2014
- 63Citations
- 83Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations63
- Citation Indexes63
- 63
- CrossRef32
- Captures83
- Readers83
- 83
- Mentions1
- References1
- 1
Article Description
While wake structures of many forms of swimming and flying are well characterized, the wake generated by a freely swimming undulating fin has not yet been analyzed. These elongated fins allow fish to achieve enhanced agility exemplified by the forward, backward and vertical swimming capabilities of knifefish, and also have potential applications in the design of more maneuverable underwater vehicles. We present the flow structure of an undulating robotic fin model using particle image velocimetry to measure fluid velocity fields in the wake. We supplement the experimental robotic work with highfidelity computational fluid dynamics, simulating the hydrodynamics of both a virtual fish, whose fin kinematics and fin plus body morphology are measured from a freely swimming knifefish, and a virtual rendering of our robot. Our results indicate that a series of linked vortex tubes is shed off the long edge of the fin as the undulatory wave travels lengthwise along the fin. A jet at an oblique angle to the fin is associated with the successive vortex tubes, propelling the fish forward. The vortex structure bears similarity to the linked vortex ring structure trailing the oscillating caudal fin of a carangiform swimmer, though the vortex rings are distorted because of the undulatory kinematics of the elongated fin. © 2014. Published by The Company of Biologists Ltd.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84893382951&origin=inward; http://dx.doi.org/10.1242/jeb.091520; http://www.ncbi.nlm.nih.gov/pubmed/24072799; https://journals.biologists.com/jeb/article/doi/10.1242/jeb.091520/257344/Undulating-fins-produce-off-axis-thrust-and-flow; https://dx.doi.org/10.1242/jeb.091520; https://jeb.biologists.org/content/217/2/201
The Company of Biologists
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know